Home
Class 12
MATHS
Simplify (x^a/x^b)^ax(x^b/x^a)^ax(x^a/x^...

Simplify `(x^a/x^b)^a`x`(x^b/x^a)^a`x`(x^a/x^a)^b`

Promotional Banner

Similar Questions

Explore conceptually related problems

(x^a/x^b)^(a+b).(x^b/x^c)^(b+c).(x^c/x^a)^(c+a)

Prove that: ((x^a)/(x^b))^c\xx\ ((x^b)/(x^c))^a\ xx\ ((x^c)/(x^a))^b=1

Assuming that x is a positive real number and a ,\ b ,\ c are rational numbers, show that: ((x^b)/(x^c))^a\ ((x^c)/(x^a))^b\ ((x^a)/(x^b))^c=1

Assuming that x is a positive real number and a ,\ b ,\ c are rational numbers, show that: ((x^a)/(x^b))^(a+b)\ ((x^b)/(x^c))^(b+c)((x^c)/(x^a))^(c+a)=1

Simplify : ((x^(a))/(x^(-b)))^(a^(2)-ab+b^(2))xx((x^(b))/(x^(-c)))^(b^(2)-bc+c^(2))xx((x^(c))/(x^(-a)))^(c^(2)-ca+a^(2))

Show that : (i) x^(a(b-c))/(x^(b(a-c)))/((x^b)/(x^a))^c=1 , (ii) ((x^(a+b))^2(x^(b+c))^2(x^(c+a))^2)/((x^a x^b x^c)^4)=1

For any positive real number x , find the value of ((x^a)/(x^b))^(a+b)\ xx\ ((x^b)/(x^c))^(b+c)\ xx\ ((x^c)/(x^a))^(c+a)

Simplify: (i)\ ((x^(a+b))/(x^c))^(a-b)\ ((x^(b+c))/(x^a))^(b-c)\ ((x^(c+a))/(x^b))^(c-a) (ii)\ ((x^l)/(x^m))^(1/(lm))\ xx\ ((x^m)/(x^n))^(1/(mn))\ xx\ \ ((x^n)/(x^l))^(1/(ln))

If x is a positive real number and the exponents are rational numbers, show that: ((x^a)/(x^b))^(a+b-c)\ ((x^b)/(x^c))^(b+c-a)((x^c)/(x^a))^(c+a-b)=1

If f(x)=((x^2)/(x^b))^(a+b)*((x^b)/(x^c))^(b+c)*((x^c)/(x^a))^(c+a) , then f^(prime)(x) is equal to: (a) 1 (b) 0 (c) x^(a+b+c) (d) None of these