Home
Class 12
MATHS
Show that : lim( n -> oo ) ( 1/( 1 ...

Show that :

`lim_( n -> oo ) ( 1/( 1 + a ) )^n = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_ (n rarr oo) (1) / (1 + x ^ (n))

lim_ (n rarr oo) (1 + 2 + 3 * -n) / (n ^ (2))

Show that, lim_(n to oo)((1)/(n + 1)+(1)/(n+2)+…+(1)/(6n))=log 6 .

lim_ (n rarr oo) [1+ (2) / (n)] ^ (2n) =

lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)

lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)

lim_(n rarr oo)(n!)/((n+1)!-n!)

Show that lim_(n rarr oo)((1)/(n+1)+(1)/(n+2)+...+(1)/(6n))=log6

lim_ (n rarr oo) (n) / ((n!) ^ ((1) / (n)))