Similar Questions
Explore conceptually related problems
Recommended Questions
- Show that : lim( n -> oo ) ( 1/( 1 + a ) )^n = 0
Text Solution
|
- Show that ("lim")(nvecoo)(1/(n+1)+1/(n+2)++1/(6n))=log6
Text Solution
|
- f'(0) = lim(n->oo) nf(1/n) and f(0)=0 Using this, find lim(n->oo)((n+1...
Text Solution
|
- lim (n rarr oo) (n ^ (alpha) sin ^ (2) n!) / (n + 1), 0 <alpha<1, is e...
Text Solution
|
- Find lim (n rarr oo) [(n + 1) ^ (n + 1) * n ^ (- n-1) - (n + 1) * n ^ ...
Text Solution
|
- lim (n rarr oo) n ^ (2) (x ^ ((1) / (n)) - x ^ ((1) / (n + 1))), x>...
Text Solution
|
- lim(n to oo) (n^(p) sin^(2)(n!))/(n +1) , 0 lt p lt 1, is equal to-
Text Solution
|
- lim(n rarr oo)((a^(n+1)+b^(n+1))/(a^(n)-b^(n))), 0 lt a lt b
Text Solution
|
- Evaluate the following (i) lim(n to oo)((1)/(n^(2))+(2)/(n^(2))+(3)...
Text Solution
|