Home
Class 9
MATHS
1/(2+sqrt3)+2/(sqrt5-sqrt3)+1/(2-sqrt5)...

`1/(2+sqrt3)+2/(sqrt5-sqrt3)+1/(2-sqrt5)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(1)/(2+sqrt(3))+(2)/(sqrt(5)-sqrt(3))+(1)/(2-sqrt(5))=0

Simplify: (7+3sqrt(5))/(3+sqrt(5))-(7-3sqrt(5))/(3-sqrt(5)) (ii) (1)/(2+sqrt(3))+(2)/(sqrt(5)-sqrt(3))+(1)/(2-sqrt(5))

(2sqrt3 + sqrt5)(2sqrt3 - sqrt5)

The value of { 1/(sqrt6 - sqrt5) - 1/(sqrt5 - sqrt4) + 1/(sqrt4 - sqrt3) - 1/(sqrt3 - sqrt2) + 1/(sqrt2 - 1)} is :

Simplify each of the following : (i)(sqrt(2)+1)/(sqrt(2)-1)+(sqrt(2)-1)/(sqrt(2)+1)" "(ii)(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))+(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))" "(iii)(2)/(sqrt(5)+sqrt(3))+(1)/(sqrt(3)+sqrt(2))-(3)/(sqrt(5)+sqrt(2))" "(iv)(sqrt(7)+sqrt(5))/(sqrt(7)-sqrt(5))-(sqrt(7)-sqrt(5))/(sqrt(7)+sqrt(5))

Show that (sqrt5+sqrt3)/(sqrt5-sqrt3)-(sqrt5-sqrt3)/(sqrt5+sqrt3)=2sqrt15