Home
Class 12
MATHS
If x=sqrt(1+t^2) , y=sqrt(1-t^2) then fi...

If `x=sqrt(1+t^2)` , `y=sqrt(1-t^2)` then find `dy/dx`.

Promotional Banner

Similar Questions

Explore conceptually related problems

y=t^(2)/(sqrt(t)) then find dy/dt

If x = cos ^(-1) (t) , y = sqrt(1-t^(2)) then (dy)/(dx) = _____________

If sqrt(1+x^(2))+sqrt(1+y^(2))= a then find (dy)/(dx)=

If x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2)), then find (dy)/(dx) at t=2

If y=sqrt(3t+1) and t=xsqrt3 then find (dy)/(dx)

If y=tan^(-1) ((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))), x^2 le 1 , then find (dy)/(dx)

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=

If sin x=(2t)/(1+t^(2)),tan y=(2t)/(1-t^(2)), find (dy)/(dx)