Home
Class 8
MATHS
Solve for x: 3 + x/4 = 1/2 (4-x/3)-5/6 +...

Solve for x: `3 + x/4 = 1/2 (4-x/3)-5/6 +1/3(11- x/2)`

A

`20/7`

B

`22/7`

C

`23/7`

D

`24/7`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 3 + \frac{x}{4} = \frac{1}{2} (4 - \frac{x}{3}) - \frac{5}{6} + \frac{1}{3}(11 - \frac{x}{2}) \), we will follow these steps: ### Step 1: Write down the equation We start with the equation: \[ 3 + \frac{x}{4} = \frac{1}{2} (4 - \frac{x}{3}) - \frac{5}{6} + \frac{1}{3}(11 - \frac{x}{2}) \] ### Step 2: Expand the right-hand side We will expand the terms on the right-hand side: - For \( \frac{1}{2} (4 - \frac{x}{3}) \): \[ \frac{1}{2} \cdot 4 - \frac{1}{2} \cdot \frac{x}{3} = 2 - \frac{x}{6} \] - For \( \frac{1}{3}(11 - \frac{x}{2}) \): \[ \frac{1}{3} \cdot 11 - \frac{1}{3} \cdot \frac{x}{2} = \frac{11}{3} - \frac{x}{6} \] Putting it all together, we have: \[ 3 + \frac{x}{4} = \left(2 - \frac{x}{6}\right) - \frac{5}{6} + \left(\frac{11}{3} - \frac{x}{6}\right) \] ### Step 3: Simplify the right-hand side Now, we simplify the right-hand side: \[ 2 - \frac{5}{6} = \frac{12}{6} - \frac{5}{6} = \frac{7}{6} \] So now we have: \[ 3 + \frac{x}{4} = \frac{7}{6} + \frac{11}{3} - \frac{x}{6} - \frac{x}{6} \] Next, we convert \( \frac{11}{3} \) to have a common denominator of 6: \[ \frac{11}{3} = \frac{22}{6} \] Thus, the right-hand side becomes: \[ \frac{7}{6} + \frac{22}{6} - \frac{2x}{6} = \frac{29}{6} - \frac{2x}{6} \] ### Step 4: Set the equation Now we have: \[ 3 + \frac{x}{4} = \frac{29}{6} - \frac{2x}{6} \] ### Step 5: Move all \(x\) terms to one side and constants to the other First, convert 3 to a fraction with a denominator of 12: \[ 3 = \frac{36}{12} \] Now, rewrite \( \frac{x}{4} \) with a denominator of 12: \[ \frac{x}{4} = \frac{3x}{12} \] Now we can rewrite the equation: \[ \frac{36}{12} + \frac{3x}{12} = \frac{29}{6} - \frac{2x}{6} \] Convert \( \frac{29}{6} \) to a denominator of 12: \[ \frac{29}{6} = \frac{58}{12} \] Now we have: \[ \frac{36}{12} + \frac{3x}{12} = \frac{58}{12} - \frac{4x}{12} \] ### Step 6: Combine like terms Multiply through by 12 to eliminate the denominators: \[ 36 + 3x = 58 - 4x \] Now, add \(4x\) to both sides: \[ 36 + 3x + 4x = 58 \] This simplifies to: \[ 36 + 7x = 58 \] ### Step 7: Isolate \(x\) Subtract 36 from both sides: \[ 7x = 58 - 36 \] This simplifies to: \[ 7x = 22 \] ### Step 8: Solve for \(x\) Now divide both sides by 7: \[ x = \frac{22}{7} \] ### Final Answer Thus, the solution for \(x\) is: \[ \boxed{\frac{22}{7}} \]
Promotional Banner

Topper's Solved these Questions

  • IMO MODEL TEST PAPER 1

    SCIENCE OLYMPIAD FOUNDATION |Exercise EVERYDAY MATHEMATICS |10 Videos
  • IMO MODEL TEST PAPER 1

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION |5 Videos
  • IMO MODEL TEST PAPER -3

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section|5 Videos
  • IMO MODEL TEST PAPER 2

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION |5 Videos

Similar Questions

Explore conceptually related problems

Solve for x: (2x-5)/3+(x-3)/2=1/6+2x

Solve for x: 4^(x) - 3^(x-1/2)=3^(x+1/2)-2^(2x-1) .

Solve for x:4^(x)-3^(x-1/2)=3^(x+1/2)-2^(2x-1)

Solve : 3((3x)/(5) + 4) ge 2(x-6)

Solve for x, (4x+3)/5-((2x-1)/3)=7x+1/2

solve : (3x - 4) /(2) +1 ge (x+1)/(4)

Solve for :x:(x-1)/(x-2)+(x-3)/(x-4)=3(1)/(3),x!=2,4

Solve for x : 2/5 (4x-1)-[4x-((1-3x)/2)]=(x-7)/2

Solve for x: 11^(4x-5)*3^(2x)=5^(3-x) * 7^(-x) .