Home
Class 8
MATHS
If (x + 1/x) = sqrt5, then find the valu...

If `(x + 1/x) = sqrt5`, then find the value of `x^4 + 1/x^4`

A

8

B

3

C

5

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^4 + \frac{1}{x^4} \) given that \( x + \frac{1}{x} = \sqrt{5} \). ### Step-by-Step Solution: 1. **Given Equation**: \[ x + \frac{1}{x} = \sqrt{5} \] 2. **Square Both Sides**: To eliminate the fraction, we square both sides: \[ \left( x + \frac{1}{x} \right)^2 = (\sqrt{5})^2 \] This simplifies to: \[ x^2 + 2 + \frac{1}{x^2} = 5 \] 3. **Rearranging the Equation**: Now, we can rearrange the equation to isolate \( x^2 + \frac{1}{x^2} \): \[ x^2 + \frac{1}{x^2} = 5 - 2 \] Thus, \[ x^2 + \frac{1}{x^2} = 3 \] 4. **Square Again**: Next, we need to find \( x^4 + \frac{1}{x^4} \). We can do this by squaring \( x^2 + \frac{1}{x^2} \): \[ \left( x^2 + \frac{1}{x^2} \right)^2 = 3^2 \] This expands to: \[ x^4 + 2 + \frac{1}{x^4} = 9 \] 5. **Rearranging Again**: Now, we can isolate \( x^4 + \frac{1}{x^4} \): \[ x^4 + \frac{1}{x^4} = 9 - 2 \] Thus, \[ x^4 + \frac{1}{x^4} = 7 \] ### Final Answer: The value of \( x^4 + \frac{1}{x^4} \) is \( 7 \). ---
Promotional Banner

Topper's Solved these Questions

  • IMO MODEL TEST PAPER 1

    SCIENCE OLYMPIAD FOUNDATION |Exercise EVERYDAY MATHEMATICS |10 Videos
  • IMO MODEL TEST PAPER 1

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION |5 Videos
  • IMO MODEL TEST PAPER -3

    SCIENCE OLYMPIAD FOUNDATION |Exercise Achievers Section|5 Videos
  • IMO MODEL TEST PAPER 2

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION |5 Videos

Similar Questions

Explore conceptually related problems

If x=9−4sqrt5 then , find the value of [x^3− 1/(x^3)]

If x - 1/x = 5 , find the value of x^4 - 1/x^4

If x+1/x=4 then find the value of x-1/x

If x = 3 + sqrt(8) find the value of x^(4) + (1)/(x^(4))

If x + (1)/(x) = 5 find the values of (i) x^(2) + (1)/(x^(2)) and (ii) x^(4) + (1)/(x^(4))

If , 4x = sqrt5+2 , then the value of (x-1/(16x)) is