Home
Class 8
MATHS
Simplify for m : ((2m+1/(2m))(3m-3/m)+3/...

Simplify for m : `((2m+1/(2m))(3m-3/m)+3/(2m^2))/((m+1/m)(2m-1/(2m))+1/(2m^2))=39/19`

A

2

B

4

C

0

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the equation for \( m \): \[ \frac{\left( \frac{2m + 1}{2m} \cdot \frac{3m - 3}{m} + \frac{3}{2m^2} \right)}{\left( \frac{m + 1}{m} \cdot \frac{2m - 1}{2m} + \frac{1}{2m^2} \right)} = \frac{39}{19} \] ### Step 1: Simplify the Numerator The numerator is: \[ \frac{2m + 1}{2m} \cdot \frac{3m - 3}{m} + \frac{3}{2m^2} \] First, simplify \( \frac{2m + 1}{2m} \cdot \frac{3m - 3}{m} \): 1. \( (2m + 1)(3m - 3) = 6m^2 - 6m + 3m - 3 = 6m^2 - 3m - 3 \) 2. Divide by \( 2m \cdot m = 2m^2 \): \[ \frac{6m^2 - 3m - 3}{2m^2} = 3 - \frac{3}{2m} - \frac{3}{2m^2} \] Now add \( \frac{3}{2m^2} \): \[ 3 - \frac{3}{2m} \] ### Step 2: Simplify the Denominator The denominator is: \[ \frac{m + 1}{m} \cdot \frac{2m - 1}{2m} + \frac{1}{2m^2} \] 1. Simplify \( \frac{m + 1}{m} \cdot \frac{2m - 1}{2m} \): \[ \frac{(m + 1)(2m - 1)}{2m^2} = \frac{2m^2 - m + 2m - 1}{2m^2} = \frac{2m^2 + m - 1}{2m^2} \] 2. Add \( \frac{1}{2m^2} \): \[ \frac{2m^2 + m - 1 + 1}{2m^2} = \frac{2m^2 + m}{2m^2} = 1 + \frac{m}{2m^2} = 1 + \frac{1}{2m} \] ### Step 3: Set Up the Equation Now we have: \[ \frac{3 - \frac{3}{2m}}{1 + \frac{1}{2m}} = \frac{39}{19} \] ### Step 4: Cross Multiply Cross multiplying gives: \[ 19(3 - \frac{3}{2m}) = 39(1 + \frac{1}{2m}) \] Expanding both sides: \[ 57 - \frac{57}{2m} = 39 + \frac{39}{2m} \] ### Step 5: Combine Like Terms Combine terms involving \( m \): \[ 57 - 39 = \frac{57}{2m} + \frac{39}{2m} \] \[ 18 = \frac{96}{2m} \implies 18 = \frac{48}{m} \] ### Step 6: Solve for \( m \) Cross multiplying gives: \[ 18m = 48 \implies m = \frac{48}{18} = \frac{8}{3} \] ### Step 7: Final Answer The value of \( m \) is: \[ m = \frac{8}{3} \]
Promotional Banner

Topper's Solved these Questions

  • IMO MODEL TEST PAPER 2

    SCIENCE OLYMPIAD FOUNDATION |Exercise EVERYDAY MATHEMATICS |10 Videos
  • IMO MODEL TEST PAPER 2

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION |5 Videos
  • IMO MODEL TEST PAPER 1

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION |5 Videos
  • IMO QUESTION PAPER 2017-18 SET A

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION|5 Videos

Similar Questions

Explore conceptually related problems

(m-1)/(m-4)=(2m-3)/(3m-8)

m-(m-1)/2=1-(m-2)/3

Ifm-(1)/(m)=5, find (1)m^(2)+(1)/(m^(2))(pi i)m^(2)-(1)/(m^(2))

Simplify : 8m-[3m-{3m-{2m+3-2(4m-4)}]

2m-(1)/(2m)=2 , m!=0, in m^(2)+(1)/(16m^(2)) =?

Solve : (5m^(2)+3m-4)+(3m^(2)+5m+7)-(2m^(2)-4m)

The value of (1-(1)/(2))(1-(1)/(3))(1-(1)/(4))(1-(1)/(m)) is (1-(1)/(2))(1-(1)/(2m) (d) (1)/(123(m-1)m)

If m-(1)/(m)=5 then find m^(2)-(1)/(m^(2))

if m^(2)+(1)/(m^(2))=23 evaluate m+(1)/(m) and m-(1)/(m)

If m+(1)/(m-2)=4 then (m-2)^(2)+(1)/((m-2)^(2))=