Home
Class 8
MATHS
Factorise: 4a^2 + 12ab + 9b^2 - 8a - 12b...

Factorise: `4a^2 + 12ab + 9b^2 - 8a - 12b `

A

(2a - 3b) (2a - 3b - 4)

B

(2a + 3b) (2a + 3b - 4)

C

(2a - 3b) (2a + 3b - 2)

D

(2a + 3b) (3a + 2b - 4)

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \(4a^2 + 12ab + 9b^2 - 8a - 12b\), we can follow these steps: ### Step 1: Rearrange the expression We start with the expression: \[ 4a^2 + 12ab + 9b^2 - 8a - 12b \] ### Step 2: Group the terms We can group the terms in a way that makes it easier to factor: \[ (4a^2 + 12ab + 9b^2) + (-8a - 12b) \] ### Step 3: Factor the first group The first group \(4a^2 + 12ab + 9b^2\) can be factored as a perfect square: \[ (2a + 3b)^2 \] because \(4a^2\) is \((2a)^2\), \(9b^2\) is \((3b)^2\), and \(12ab\) is \(2 \cdot 2a \cdot 3b\). ### Step 4: Factor the second group Now, we can factor out common terms from the second group: \[ -8a - 12b = -4(2a + 3b) \] ### Step 5: Combine the factored terms Now we can rewrite the expression using the factored forms: \[ (2a + 3b)^2 - 4(2a + 3b) \] ### Step 6: Let \(x = 2a + 3b\) To simplify the expression, we can let \(x = 2a + 3b\). The expression now becomes: \[ x^2 - 4x \] ### Step 7: Factor the quadratic expression We can factor this quadratic expression: \[ x(x - 4) \] ### Step 8: Substitute back for \(x\) Now, substituting back \(x = 2a + 3b\), we have: \[ (2a + 3b)(2a + 3b - 4) \] ### Final Answer Thus, the factorised form of the expression \(4a^2 + 12ab + 9b^2 - 8a - 12b\) is: \[ (2a + 3b)(2a + 3b - 4) \]
Promotional Banner

Topper's Solved these Questions

  • IMO MODEL TEST PAPER 2

    SCIENCE OLYMPIAD FOUNDATION |Exercise EVERYDAY MATHEMATICS |10 Videos
  • IMO MODEL TEST PAPER 2

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION |5 Videos
  • IMO MODEL TEST PAPER 1

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION |5 Videos
  • IMO QUESTION PAPER 2017-18 SET A

    SCIENCE OLYMPIAD FOUNDATION |Exercise ACHIEVERS SECTION|5 Videos

Similar Questions

Explore conceptually related problems

Factorise 4x^(2) -12x + 9

Factorise 4x ^(2) - 12 x + 9.

Factorise: 9a (3a-5b) - 12 a ^(2) (3a - 5b )

Factorise :4y^(2)-12y+9

Factorise: 9n -12n^(2)

Factorization by making a perfect square: 4a^(2)+12ab+9b^(2)-8a-12b

Factorise: 6ab - b ^(2) + 12 ac - 2bc

Factorise a^(2)-9b^(2) .

Factorise 8a^3+b^3+12a^2b+6ab^2