Home
Class 12
MATHS
If f(x)=log(x^3)(logex^2) then find f'(e...

If `f(x)=log_(x^3)(log_ex^2)` then find `f'(e)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=log_(x) (log x)," then find "f'(x) at x= e

If f(x)=log_(x^(3))(log x^(2)), then f'(x) at x=e is

If f(x) = log_(x^(2)) (log_(e) x) "then f' (x) at x= e" is

If f(x)=log_(x)(log_(e)x) , then f'(x) at x=e is equal to

If f(x)=log_(e)[log_(e)x] , then what is f' (e) equal to?

STATEMENT -1 : If f(x) = log_(x^(2)) (log x) , " then" f'( e) = 1/e STATEMENT -2 : If a gt 0 , b gt 0 and a ne b then log_(a) b = (log b)/(log a)

If f(x)=log_x(log_ex) then f'(e) =________

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is