Home
Class 12
MATHS
(dy)/(dx)=(y)/(x)(log(y/x)+1)...

`(dy)/(dx)=(y)/(x)(log(y/x)+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(y)=y^(x) , prove that (dy)/(dx)=((y)/(x)-log y)/((x)/(y)-log x)

(dy)/(dx)=(xy)/((1-x)(1+y)) A) x+y+log[y(1-x)]=c B) x+y+log[x(1-y)]=c C) x+y+log(x+y)=c D) y-x+log[x(1-y)]=c

The solution of (dy)/(dx)=(x+y-1)+(x+y)/(log(x+y)), is given by

If y=a^(x^(x^(2)*oo)), prove that (dy)/(dx)=(y^(2)log y)/(x(1-y log x*log y))

The solution of (dy)/(dx)+(y)/(x)=(1)/((1+log x+log y)^(2)) is given by

If y=a^(a^(x)) and (dy)/(dx)=y*a^(x)(log a)^(n) then the value of n is

(dy)/(dx)=(x+y)ln(x+y)-1

Solve (dy)/(dx)+(y)/(x)=log x.