Home
Class 9
MATHS
If f(x) = x^2- 1/x^2 then prove that, f(...

If `f(x) = x^2- 1/x^2` then prove that, `f(x)+f(1/x)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f (x) =(x-1)/(x+1), then prove that f{f(x)}=-1/x.

Let (x) is a real function, defines as f(x) =(x-1)/(x+1), then prove that f(2x)=(3f(x)+1)/(f(x)+3).

If f(x)=(x)/(x-1) , then prove that (f(a))/(f(a+1))=f(a^(2))

If f(x)=x+(1)/(x) , then prove that : {f(x)}^(3)=f(x^(3))+3*f((1)/(x))

If f is a real function defined by f(x)=(x-1)/(x+1) , then prove that f(2x)=(3f(x)+1)/(f(x)+3)

If f(x)=cos(logx) , then prove that f((1)/(x)).f((1)/(y))-(1)/(2)[f((x)/(y))+f(xy)]=0

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^2)]=2f(x)dot

If f(x)=log[(1+x)/(1-x)], then prove that f[(2x)/(1+x^2)]=2f(x)dot

If f(x)="log"(1+x)/(1-x) , then prove that: f((2x)/(1+x^(2)))=2f(x)

If f(x)=(1-x^(2))/(1+x^(2)) , then prove that: f(tan theta)=cos 2theta