Home
Class 12
MATHS
(dy)/(dx)=(x+1)^(3)+(2y)/(x+1)...

`(dy)/(dx)=(x+1)^(3)+(2y)/(x+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following differential equations : y -x (dy)/(dx) =3 (1+x^(2) (dy)/(dx))

(y-x(dy)/(dx))=3(1-x^(2)(dy)/(dx))

x(x-1)(dy)/(dx)-(x-2)y=x^(3)(2x-1)

(dy)/(dx)=(x+y+1)/(2x+2y+3)

y-x(dy)/(dx)=3y^(2)+(dy)/(dx) A) (1+x)(1-cy)=3y B) (1+x)(1-3y)=cy C) (1-x)(1-3y)=cy D) (1+3x)(1-y)=cx

find the order and degree of D.E : (1) ((d^(2)y)/(dx^(2) ))^2 + ((dy)/(dx))^(3) = e^(x) (2) sqrt(1 + 1/((dy)/(dx))^(2))= ((d^(2)y)/(dx^(2)))^(3/2) (3) e^((dy)/(dx))+ (dy)/(dx) =x

The solution of (y - (xdy)/dx)= 3 (1-x^(2)(dy)/(dx)) is

(dy)/(dx)-2/(x+1) y=(x+1)^3

The degree and order of differential equatiion (x+y(dy)/(dx))^((1)/(2))=(x sin x((dy)/(dx))^(2)+y)/(((dy)/(dx))^(3)) is :