Home
Class 10
MATHS
sin^4theta+cos^4theta=1-1/2sin^2(2theta)...

`sin^4theta+cos^4theta=1-1/2sin^2(2theta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : sin^(4)theta-cos^(4)theta=2sin^(2)theta-1

Prove that sin^(4)theta-cos^(4)theta=sin^(2)theta-cos^(2)theta .

Prove the following identities: 2(sin^6theta+cos^6theta)-3(sin^4theta+cos^4theta)+1=0 sin^6theta+cos^6theta+3sin^2thetacos^2theta=1 (sin^8theta-cos^8theta)=(sin^2theta-cos^2theta)(1-2s in^2thetacos^2theta)

Prove the following identity: (1/(sec^2theta-cos^2theta)+1/(cos e c^2theta-sin^2theta))sin^2thetacos^2theta=(1-sin^2thetacos^2theta)/(2+sin^2thetacos^2theta)

Prove the following identity: (1/(sec^2theta-cos^2theta)+1/(cos e c^2theta-sin^2theta))sin^2thetacos^2theta=(1-sin^2thetacos^2theta)/(2+sin^2thetacos^2theta)

The value of theta lying between theta=0 and theta=pi/2 and satisfying the equation |1+sin^2theta cos^2theta4sin4thetasin^2theta1+cos^2theta4sin4thetasin^2thetacos^2theta1+4sin4theta|=0a r e (7pi)/(24) (b) (5pi)/(24) (c) (11pi)/(24) (d) pi/(24)

The value of theta lying between 0 and pi/2 and satisfying the equation |(1+cos^2theta, sin^2theta, 4sin4theta),(cos^2theta, 1+sin^2theta, 4sin4theta)(cos^2theta, sin^2theta, 1+4sin4theta)|=0 is (are)

Prove that : sin^(2)theta+cos^(4)theta=cos^(2)theta+sin^(4)theta

If "cosec" theta = sqrt(5) , find the value of (i) 2-sin^(2)theta - cos^(2)theta (ii) 2 + (1)/(sin^(2)theta) - (cos^(2)theta)/(sin^(2)theta)

The value for 2(sin^6theta+cos^6theta)-3(sin^4theta+cos^4theta) +1 is