Home
Class 10
MATHS
(sin^4theta-cos^4theta)/(sin^2theta-cos^...

`(sin^4theta-cos^4theta)/(sin^2theta-cos^2theta)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following identities: 2(sin^6theta+cos^6theta)-3(sin^4theta+cos^4theta)+1=0 sin^6theta+cos^6theta+3sin^2thetacos^2theta=1 (sin^8theta-cos^8theta)=(sin^2theta-cos^2theta)(1-2s in^2thetacos^2theta)

(1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=?

Prove that sin^(4)theta-cos^(4)theta=sin^(2)theta-cos^(2)theta .

The value for 2(sin^6theta+cos^6theta)-3(sin^4theta+cos^4theta) +1 is

Prove : (1+sin2theta-cos2theta)/(1+sin2theta+cos2theta)=tantheta

Prove that: a) (sin2theta)/(1+cos2theta) = tantheta b) (1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=cottheta

If (sin^(3)theta-cos^(3)theta)/(sin theta-cos theta)-(cos theta)/(sqrt(1+cot^(2)theta))-2 tan theta cot theta=-1 (AA theta in[0, 2pi], then

Prove that: (1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=cot theta

If cot theta = (3)/(4) find the value of : ( sin theta- cos theta)/(sin theta+cos theta)

Find the value of 6(sin^6theta+cos^6theta)-9(sin^4theta+cos^4theta)+4