Home
Class 12
MATHS
If x+y+z=0 show that |[1,1,1],[x,y,z],[x...

If `x+y+z=0` show that `|[1,1,1],[x,y,z],[x^3,y^3,z^3]|=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |[x,y,z] , [x^2, y^2, z^2] , [yz, zx, xy]| = |[1,1,1] , [x^2, y^2, z^2] , [x^3, y^3, z^3]|

" (d) "|[x,y,z],[x^(2),y^(2),z^(3)],[yz,zx,xy]|=|[1,1,1],[x^(3),y^(2),z^(2)],[x^(3),y^(3),z^(3)]|

Without expanding as far as possible, prove that |{:(1,1,1),(x,y,z),(x^(3),y^(3),z^(3)):}| = (x-y)(y-z)(z-x)(x+y+z) .

Prove that : |{:(1,1,1),(x,y,z),(x^(3),y^(3),z^(3)):}|=(x-y)(y-z)(x+y+z)

If quad x+y+z=0 show that x^(3)+y^(3)+z^(3)=3xyz

Show without expanding at any stage that: [x+y,y+z,z+x],[z,x,y],[1,1,1]|=0

Prove that |{:(x,y,z),(x^2,y^2,z^2),(yz,zy,xy):}|=|{:(1,1,1),(x^2,y^2,z^2),(x^3,y^3,z^3):}|=(y-z)(z-x)(x-y)(yz+zy+xy)

If |[x^3+1, x^2, x] , [y^3+1, y^2, y] , [z^3+1, z^2, z]|=0 and x, y, z are all different then prove that xyz=-1

If x!=y!=za n d|[x,x^2, 1+x^3],[y ,y^2 ,1+y^3],[z, z^2, 1+z^3]|=0, then the value of x y z is a.1 b. 2 c. -1 d. 2

If x!=0,y!=0,z!=0 and det[[1+x,1,11+y,1+2y,11+z,1+z,1+3z]]=0, then x^(-1)+y^(-1)+z^(-1) is equal to a.1b.1c.-3d none of these