Home
Class 11
MATHS
(v) lim(x->oo) x...

(v) `lim_(x->oo) x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve lim_(x->oo) (x^2-4)/((x-2)^2.(x+7))

Consider f(x) = lim_(x-oo)(x^n-sinx^n)/(x^n+sinx^n) for x>0,x!=1,f(1)=0 then

The value of lim_(x->oo)(a x^2+b x+c)/(dx+e)(a , b , c , d , e in R-{0}) depends on the sign of :

lim_(x->oo)[sinx/x]

lim_(x->oo)sinx/x =

If lim_(x->oo) f(x) exists and is finite and nonzero and if lim_(x->oo) {f(x)+(3f(x)−1)/(f^2(x))}=3 ,then the value of lim_(x->oo) f(x) is

Evaluate: ("lim")_(x->oo)[x(a^(1/x)-1)], a >1

If [.] denotes the greatest integer function then lim_(x->oo)([x]+[2x]+[3x]+[4x])/x^2 is

If alpha in(0,1) and f:R->R and lim_(x->oo)f(x)=0,lim_(x->oo)(f(x)-f(alphax))/x=0, then lim_(x->oo)f(x)/x=lambda where 2lambda+7 is

Evaluate: lim_(x->oo) (x+7sinx)/(-2x+13) using sandwich theorem.