Home
Class 11
MATHS
lim(x->oo) (1+a/x)^x =e^a...

`lim_(x->oo) (1+a/x)^x =e^a`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->oo) (sinx/x) =

lim_(x->oo) xsin(2/x)

If lim_(x -> oo) (1 + a/x + b/x^2)^(2x)= e^2 then the values of a and b, are

lim_(x->oo)(1/e-x/(1+x))^x is equal to (a) e/(1-e) (b) 0 (c) e/(e^(1-e)) (d) does not exist

lim_(x->oo)sin(1/x)/(1/x)

lim_(x->oo)[sinx/x]

lim_(x->oo)sinx/x =

lim_(x->oo)2^xsin(a/2^x)

lim_(x -> oo) x^n / e^x = 0 , (n is an integer) for

If lim_(x->oo) f(x) exists and is finite and nonzero and if lim_(x->oo) {f(x)+(3f(x)−1)/(f^2(x))}=3 ,then the value of lim_(x->oo) f(x) is