Home
Class 11
MATHS
(a) Prove that, lim(n->oo) (n^2+1)/n^2 =...

(a) Prove that, `lim_(n->oo) (n^2+1)/n^2 =1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that lim_(n->oo)(1+1/n)^n=e

lim_(n->oo) nsin(1/n)

The value of lim_(n->oo) n^(1/n)

lim_(n->oo)2^(n-1)sin(a/2^n)

Prove that log_e ((n^2)/(n^2-1))=1/(n^2)+1/(2n^4)+1/(3n^6)+........oo

lim_(n rarr oo)2^(1/n)

7. lim_(n->oo) (2^(1/n)-1)/(2^(1/n)+1)

The value of ("lim")_(n->oo)[(n+1)^2 3-(n-1)^2 3] is_____

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)

evaluate lim_(n->oo)((e^n)/pi)^(1/ n)