Home
Class 11
MATHS
Find lim(x->oo) e^x...

Find `lim_(x->oo) e^x`

Promotional Banner

Similar Questions

Explore conceptually related problems

find lim_(x->0) (e^(x+3)-e^3)/x

If lim_(x->oo) f(x) exists and is finite and nonzero and if lim_(x->oo) {f(x)+(3f(x)−1)/(f^2(x))}=3 ,then the value of lim_(x->oo) f(x) is

lim_(x->oo) xsin(2/x)

lim_(x->oo)[sinx/x]

lim_(x->oo)sinx/x =

Solve lim_(x->oo)(e^x-e^-x)/(e^x-e^-x)

Let f(x)=(log_e(x^2+e^x))/(log_e(x^4+e^2x)) . If lim_(xrarr oo) f(x)=l and lim_(xrarr-oo)f(x)=m , then

lim_(x -> oo) x^n / e^x = 0 , (n is an integer) for

If f(x) = lim_(n->oo) tan^(-1) (4n^2(1-cos(x/n))) and g(x) = lim_(n->oo) n^2/2 ln cos(2x/n) then lim_(x->0) (e^(-2g(x)) -e^(f(x)))/(x^6) equals

lim_(x->oo)(e^(11x)-7x)^(1/(3x))