Home
Class 10
MATHS
If cot theta=(1)/(sqrt(5)) then (sec^(2)...

If `cot theta=(1)/(sqrt(5))` then `(sec^(2)theta-cosec^(2)theta)/(sec^(2)theta+cosec^(2)theta)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : sec^(2)theta+"cosec"^(2)theta=sec^(2)theta*"cosec" ^(2)theta

Prove that tan^(2)theta+cot^(2)theta+2=sec^(2)theta cosec^(2)theta

If tan theta =(1)/(sqrt(7)) , find the value of ("cosec"^(2)theta-sec^(2)theta)/("cosec"^(2)theta+sec^(2)theta) .

1/sec2(theta) + 1/cosec2(theta) =

Prove that cos^(2)theta("cosec"^(2)theta-cot^(2)theta)=cos^(2)theta .

Prove that cot^(4)theta+cot^(2)theta="cosec"^(4)theta-"cosec"^(2)theta

Solve cosec^(2)theta-cot^(2) theta=cos theta .

Prove that 1+cot^(2) theta = cosec^(2) theta

Prove that : (i) 1+(cos^(2)theta)/(sin^(2)theta)-"cosec"^(2)theta=0 (ii) (1+tan^(2)theta)/("cosec"^(2)theta)=tan^(2)theta

prove that tantheta+cottheta = sqrt(sec^(2)theta+cosec^(2)theta)