Home
Class 8
MATHS
Find the value of x 2^(2*x+1) = 4^(2*...

Find the value of x
`2^(2*x+1) = 4^(2*x-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x+(1)/(x)=2 find the value of x^(2)+1/x^(2)

find the value of x for which f(x) = ((2x-1)(x-1)^(2)(x-2)^(2))/((x-4)^(2))ge 0.

If x- (1)/ (x ) = 4 , find the value of : x^(2) + (1)/( x^(2))

If 2x= 3+ sqrt7 , find the value of : 4x^(2) +(1)/(x^(2))

Find the value of sin^(-1)(2^x) (ii) cos^(-1)sqrt(x^2-x+1) tan^(-1)(x^2)/(1+x^2) (iv) sec^(-1)(x+1/x)

Find the value of x for which f(x) = ((x-2)^(2)(1-x)(x-3)^(2)(x-4)^(2))/((x-1))le 0.

If x=2+sqrt(3) , then find the value of x^(4)-4x^(3)+x^(2)+x+1 .

Find the value of k, if (k)/(x^(2)-4) = (1)/(x-2)-(1)/(x+2)

If x in (0, 1) , then find the value of tan^(-1) ((1 -x^(2))/(2x)) + cos^(-1) ((1 -x^(2))/(1 + x^(2)))

If x in [-1, 0] , then find the value of cos^(-1) (2x^(2) - 1) - 2 sin^(-1) x