Home
Class 8
MATHS
x^3. x^-5 . x^-7.x^7 .x^7.x^5.x^-3...

`x^3. x^-5 . x^-7.x^7 .x^7.x^5.x^-3`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : int_(-sqrt(2))^(sqrt(2))(2x^7+3x^6-10 x^5-7x^3-12 x^2+x+1)/(x^2+2)dx

Find the coefficient of x^7 in the expansion of (1+2x + 3x^2 + 4x^3 + 5x^4 + 6x^5 + 7x^6 + 8x^7)^10

Divide 2x^5 -3x^4 +5x^3 -7x^2 +3x -4 by x-2.

Factorize : (i) x^3+3x^2+3x-7 (ii) x^3-3x^2+3x+7 (iii) x^6-7x^3-8

Add : 3x, - 5x , 7x

Let P(x) = x^(7) - 3x^(5) +x^(3) - 7x^(2) +5 and q(x) = x- 2 . The remainder if p(x) is divided by q(x) is

The equation 6x ^5 + 7x^4 +12x^3+ 12x^2 + 7x +6=0 is a reciprocal equation of

If f(x) = x + (x^3)/(3!) +(x^5)/(5!) +(x^7)/(7!) + .... then f'(x) =

Solve sqrt(3x^2 -7x -30) - sqrt(2 x^2 -7x-5) = x-5

If (3x-1)^7=a_7x^7+a_6x^6+a_5x^5+....+a_1x+a_0 then the value of a_7 + a_6. . . . . . .a_0 =