Home
Class 12
MATHS
SOLVE : x*(dy)/(dx) + y = y^(2) log x...

SOLVE : `x*(dy)/(dx) + y = y^(2) log x`

Promotional Banner

Similar Questions

Explore conceptually related problems

(x log x ) (dy)/(dx) + y = 2 log x

Solve x(dy)/(dx)+2y=x^(2)log x

Solve x(dy)/(dx)+y=y^(2)ln x

Solve the differential equation x (dy)/(dx) + 2y = x ^(2) log x

Solve (x log x ) ( dy)/(dx) + y = (2)/(x) log x .

(i) x(dy)/(dx)+y=log x

The solution of x log x (dy)/(dx) + y = 2/xlog x is

solve x((dy)/(dx))=y(log y-log x+1)

Solve (dy)/(dx)+(y)/(x)=log x.

solve (dy) / (dx) + (y) / (x) * log y = (y) / (x ^ (2)) (log y) ^ (2)