Home
Class 8
MATHS
(sqrt 5 + sqrt 3)^4 +(sqrt 5- sqrt 3)^4...

`(sqrt 5 + sqrt 3)^4 +(sqrt 5- sqrt 3)^4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Rationalize the denominator 1/(sqrt 3 - sqrt 2) - 2/(sqrt 5 - sqrt 3) + 3/(sqrt 5 - sqrt 2)

Simplify: (sqrt 3 - sqrt 5)(sqrt 5+ sqrt 3)

Find (sqrt 3 - sqrt 5)(sqrt 5+ sqrt3)

Simplify: (\sqrt 5+\sqrt 3)/(\sqrt 5 - \sqrt 3)\times (\sqrt 5+\sqrt 3)/(\sqrt 5 +\sqrt 3)

Simplify {(\sqrt 5+\sqrt 3)\times (\sqrt 5 - \sqrt 3)}/(\sqrt 7- \sqrt 3)\times (\sqrt 7+ \sqrt 3)/(\sqrt 7+\sqrt 3)

Simplify : (\sqrt 5 - \sqrt 3)/(\sqrt 3 + \sqrt 5) \times (\sqrt 5 - \sqrt 3)/(\sqrt 3 -\sqrt 5)

solve (3sqrt5 +sqrt3)/(sqrt5 -sqrt3)

(iii) (sqrt 5+ sqrt 3)/(sqrt5-sqrt3)+(sqrt5-sqrt3)/(sqrt5+sqrt3) =?

Simplify: 1/(sqrt5 + sqrt4) + 1/(sqrt4 + sqrt3) + 1/(sqrt3 + sqrt2) + 1/(sqrt2 + sqrt1)

If x= ( sqrt5- sqrt3)/ ( sqrt5+ sqrt3) and y= ( sqrt5+ sqrt3)/( sqrt5- sqrt3) find the value of x^(2) + y ^(2)