Home
Class 12
MATHS
int(0)^(1)2x^(3)e^(-x^(2))dx...

`int_(0)^(1)2x^(3)e^(-x^(2))dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(oo)x^(3)e^(-x^(2))dx=

If int_(0)^(1)e^(-(x^(2)))dx=a, then find the value of int_(0)^(1)x^(2)e^(-(x^(2)))dx in terms of a

int_(0)^(1)x^2e^(2x)dx

If int _(0)^(1) e ^(-x ^(2)) dx =0, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

show that (a) int_(0) ^(2pi) sin ^(3) x dx = 0 , (b) int_(-1)^(1) e^(-x^(2)) dx = 2 int_(0)^(1) e^(-x^(2)) dx

If I_(1)=int_(0)^(1)(e^(x))/(1+x)dx aand I_(2)=int_(0)^(1)(x^(2))/(e^(x^(3))(2-x^(3)))dx then (I_(1))/(I_(2)) is

Let l_(1)=int_(0)^(1)(e^(x))/(1+x)dx and l_(2)=int_(0)^(1)(x^(2))/(e^(x^(3))(2-x^(3)))dx. "Then"(l_(1))/(l_(2)) is equal to

int_(0)^(1)(e^(x))/(1+e^(2x))dx

If int_(0)^(1) x e^(x^(2) ) dx=alpha int_(0)^(1) e^(x^(2)) dx , hten