Home
Class 12
MATHS
int(x)/((x^(4)+1)tan^(-1)x^(2))dx...

`int(x)/((x^(4)+1)tan^(-1)x^(2))dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)tan^(-1)(1-x+x^(2))dx=

int(1)/((1+x^(2))tan^(-1)x)dx

Statement I int((1)/(1+x^(4)))dx=tan^(-1)(x^(2))+C Statement II int(1)/(1+x^(2))dx=tan^(-1)x +C

int(x^(2)tan^(-1)x)/(1+x^(2))dx

int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

(i) int(1)/((1+x^(2))tan ^(-1) x )dx " "(ii) int(e^(tan^(-1)x))/(1+x^(2))dx

If 2int_(0)^(1) tan^(-1)xdx=int_(2)^(1)cot^(-1)(1-x+x^(2))dx . Then int_(0)^(1) tan^(-1)(1-x+x^(2))dx is equal to

If 2int_(0)^(1)tan^(-1)xdx=int_(0)^(1)cot^(-1)(1-x+x^(2))dx then int_(0)^(1)tan^(-1)(1-x+x^(2))dx=

int_(0)^(x)tan^(-1)(1-x+x^(2))dx

The value of the integral int_(-4)^(4)[tan^(-1)((x)/(x^(4)+1))+tan^(-1)((x^(4)+1)/(x))]dx equals