Home
Class 12
MATHS
int f(x)*g''(x)-f''(x)*g(x)dx= (a) f(...

`int f(x)*g''(x)-f''(x)*g(x)dx=`
(a) `f(x)/g'(x)`
(b) `f'(x)*g'(x)-f'(x)*g(x)`
(c) `f(x)*g'(x)-f'(x)-g'(x)+f'(x)*g(x)`
(d) `f(x)*g'(x)-f'(x)*g(x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

int{f(x)g'(x)-f'g(x)}dx equals

int(f(x)*g'(x)-f'(x)g(x))/(f(x)*g(x)){log g(x)-log f(x)}dx

int_( is )((f(x)g'(x)-f'(x)g(x))/(f(x)g(x)))*(log(g(x))-log(f(x))dx

phi(x)=f(x)*g(x)" and f'(x)*g'(x)=k ,then (2k)/(f(x)*g(x))=

int(f(x)g'(x)+g(x)f'(x))/(f(x)g(x))[logf(x)+logg(x)]dx=

int x{f(x^(2))g'(x^(2))-f'(x^(2))g(x^(2))}dx

If (d)/(dx)[f(x)]=f(x), then intf(x)[g'(x)+g''(x)]dx=

int{f(x)+-g(x)}dx=int f(x)dx+-int g(x)dx

prove the following int e^(g(x)){f(x)*g'(x)+f'(x)}dx=e^(g(x))f(x)+c