Home
Class 12
MATHS
int e^(e^(2))1/(x log x)dx=?...

`int _e^(e^(2))1/(x log x)dx=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int_e^(e^2) (dx)/(x log x)

int_(e )^(e^(2))log x dx =

Evaluate :int_(e)^(e^(2)){(1)/(log x)-(1)/((log x)^(2))}dx

int_(1)^(e^(2))(dx)/(x(1+log x)^(2))=

int e^(x)((1+x log x)/(x))dx

int e^(-ln x^(2))dx

If I_(1)=int_(e)^(e^(2))(dx)/(ln x) and I_(2)=int_(1)^(2)(e^(x))/(x)dx

If I _(1) = int _(e) ^(e ^(2)) (dx )/( ln x ) and I _(2) = int _(1) ^(2) (e ^(x))/(x) dx, then

int e^(x) (e^(log x)+1) dx