Home
Class 10
MATHS
frac{sqrt 3 + sqrt 2}{sqrt 3 -sqrt 2} + ...

`frac{sqrt 3 + sqrt 2}{sqrt 3 -sqrt 2} + frac{sqrt 3 - sqrt 2}{sqrt 3+sqrt 2}`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (sqrt3 - sqrt 2)/(sqrt 3+sqrt 2) -(sqrt3 + sqrt 2)/(sqrt 3-sqrt 2) +1/(sqrt2+1)-1/(sqrt2-1)

1/(sqrt3 + sqrt2) + 1/(sqrt3 -sqrt2)=

solve the equations: frac{2}{sqrt x} + frac{3}{sqrt y} =2 and frac{4}{sqrt x} - frac{9}{sqrt y} =-1

Solve: (sqrt 3+ sqrt2)(sqrt2-sqrt3)

Prove that tan 7 (1^(@))/(2) = sqrt2 - sqrt3 -sqrt4 + sqrt6 = (sqrt3 - sqrt2) (sqrt2 -1).

Rationalize the denominator 1/(sqrt 3 - sqrt 2) - 2/(sqrt 5 - sqrt 3) + 3/(sqrt 5 - sqrt 2)

Find : (sqrt5+sqrt2)(sqrt3+sqrt2)

Simplify: 1/(sqrt5 + sqrt4) + 1/(sqrt4 + sqrt3) + 1/(sqrt3 + sqrt2) + 1/(sqrt2 + sqrt1)

Rationalize the denominator: (2 + sqrt 3)/(2 - sqrt 3) + (2 - sqrt 3)/(2 + sqrt 3) + (sqrt 3 - 1)/(sqrt 3 + 1)

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , find x^2+y^2