Home
Class 11
MATHS
solve log(b)^(a)=(log^(a))/(log(b))...

solve
`log_(b)^(a)=(log^(a))/(log_(b))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (log_(a)(log_(b)a))/(log_(b)(log_(a)b)) is

The value of a(log_(b)(log_(b)x))/(log_(b)a) is

Prove that log_(ab)(x)=((log_(a)(x))(log_(b)(x)))/(log_(a)(x)+log_(b)(x))

a^(log_(b)c)=c^(log_(b)a)

If m;a;b>0;a!=1;b!=1; then log_(a)(m)=(log_(b)(m))/(log_(b)(a))

Prove that: (log_(a)(log_(b)a))/(log_(b)(log_(a)b))=-log_(a)b

Compute a([(log_(b)(log_(b)N))/(log_(b)a)) Compute a((log_(b)(log_(b)N))/(log_(b)a))

The value of ("log"_(a)("log"_(b)a))/("log"_(b)("log"_(a)b)) , is

Solve :2log_(x)a+log_(ax)a+3log_(b)a=0 where a>0,b=a^(2)x

If log_(8)a+log_(8)b=(log_(8)a)(log_(8)b) and log_(a)b=3 then the value of 'a' is