Home
Class 11
MATHS
Prove that: (2x-3)^6 = [2x+(-3)]^6...

Prove that: `(2x-3)^6 = [2x+(-3)]^6`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that f(x)=2/3x^9-x^6+2x^3-3x^2+6x-1 is always increasing.

Prove that: (3^(-3)x6^(2)x sqrt(98))/(5^(2)x(1)/(25)3x(15)^(-(4)/(3))x3^((1)/(3)))=28sqrt(2)

Prove that function f(x) = {-2x^(3)+3x^(2)-6x+5,xlt0 -x^(2)-x+1, xge0 is decreasing for all x.

Expand (2x-3)^(6)

If tan^(-1).(a+x)/(a) + tan ^(-1) ((a-x)/(a)) = (pi)/(6) then prove that x^(2) = 2sqrt(3)a^(2)

Prove that f(x)={(x^(2)-x-6)/(x-3) whenx !=3;5 whenx =3 ,is continuous at x=3 .

Prove that: (sqrt(3x5^(-3))-:3^(-1)3sqrt(5))x3x5^(6)6=(3)/(5)

Prove that :sec^(6)x-tan^(6)x-3sec^(2)x" ."tan^(2)x=1

Without actual division , prove that (2x^(4)+3x^(3)-12x^(2)-7x+6) is exactly divisible by (x^(2)+x-6) .

If sin x+cos x=a then prove that: sin^(6)x+cos^(6)x=1-(3)/(4)(a^(2)-1)^(2), where a^(2)<=2