Home
Class 9
MATHS
sqrty+sqrt(y-sqrt(1-y))=1...

`sqrty+sqrt(y-sqrt(1-y))=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

y = sqrt(1+sqrtx)

(sqrtx+1/sqrty)(sqrt3-1/sqrty)=?

sqrt(7sqrt(7sqrt(7...)))=(343)^(y-1) then y=

find the value of y: sqrt(y+6) - sqrt(y-1)=sqrt(y-9)

(sqrt(x)+sqrt(y))^(2)=x+y+2sqrt(xy) and sqrt(x)sqrt(y)=sqrt(xy) , where x and y are positive real numbers . If a=1+sqrt(2)+sqrt(3) and b=1+sqrt(2)-sqrt(3) , then a^(2)+b^(2)-2a-2b=

If sqrt(y-x)+sqrt(y+x)=1" then "(d^(3)y)/(dx^(3)) at x=1 is equal to

If sqrt(x) + sqrt(y) = sqrt(a) , then (dy)/(dx) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt(a))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))