Home
Class 12
MATHS
lim(n rarr oo)(1+2+3+...+n)/(n^(2)+1) is...

`lim_(n rarr oo)(1+2+3+...+n)/(n^(2)+1)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(3^(n)+5^(n)+7^(n))^(1/n) is equal to

lim_ (n rarr oo) (1) / ((n) ^ ((1) / (n))) is equal to

lim_(n rarr oo) ((4^(1/n)-1)/(3^(1/n)-1)) is equal to

lim_(n rarr oo) ((4^(1/n)-1)/(3^(1/n)-1)) is equal to

lim_(n rarr oo)(1-(2)/(n))^(n)

lim_(n rarr oo)((1+2+3+...+n)/(n+2)-(n)/(2))

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

lim_ (n rarr oo) [1+ (2) / (n)] ^ (2n) =