Home
Class 12
MATHS
int(0)^( pi/2)(x^2 cosx)dx...

`int_(0)^( pi/2)(x^2 cosx)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate :- int_(0)^(pi//2)(sinx+cosx)dx

int_(0)^(2pi)(sinx+cosx)dx=

int_(0)^(pi//2)x cosx " " dx =

If int_(0)^(pi//2) log(cosx) dx=pi/2 log (1/2), then int_(0) ^(pi//2) log (sec x ) dx =

int_(0)^(pi//2)(dx)/(2+cosx)=

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

If int_(0)^((pi)/2)log(cosx)dx=-(pi)/2log2 , then int_(0)^((pi)/2)log(cosecx)dx=

int_(0)^(pi//2)(sin x cos x dx)/(cos^(2)x+3cosx+2)=

int_(0)^(pi//2) (1+ 2 cos x)/((2+ cosx )^(2) )dx =

int_(0)^( pi/2)(cosx)/(1+sinx)dx