Home
Class 11
MATHS
If x:a=y:b then (x^2+a^2)/(x+a)+(y^2+b^2...

If `x:a=y:b` then `(x^2+a^2)/(x+a)+(y^2+b^2)/(y+b)=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

2(x/a)+(y/b)=2; (x/a)-(y/b)=4

If x=a sec theta and y=b tan theta find (x^(2))/(a^(2))-(y^(2))/(b^(2))

Area of the region bounded by the curve {(x,y) : (x^(2))/(a^(2)) + (y^(2))/(b^(2)) le 1 le "" (x)/(a) + (y)/(b)} is

If (a+b)x =a and (a+b) y = b then the value of (x^(2)+y^(2))/(x^(2)-y^(2)) is

{:((a^(2))/(x) - (b^(2))/(y) = 0),((a^(2)b)/(x)+(b^(2)a)/(y) = "a + b, where x, y"ne 0.):}

If (x)/(a)-(y)/(b) tan theta =1 and (x)/(a) tan theta +(y)/(b)=1 , then the value of (x^(2))/(a^(2))+(y^(2))/(b^(2)) is

2a(x+y)-3b(x+y)

STATEMENT-1 : The line y = (b)/(a)x will not meet the hyperbola (x^(2))/(a^(2)) -(y^(2))/(b^(2)) =1, (a gt b gt 0) . and STATEMENT-2 : The line y = (b)/(a)x is an asymptote to the hyperbola.

If x/a + y/b = a+b and x/a^(2) + y/b^(2) =2 , then what is x/a^(2) - y/b^(2) equal to?

If a=(x)/(x+y) and b=(y)/(x-y), then (ab)/(a+b) is equal to (a) (xy)/(x^(2)+y^(2)) (b) (x^(2)+y^(2))/(xy)( c) (x)/(x+y) (d) ((y)/(x+y))^(2)