Home
Class 8
MATHS
frac{sqrt 3+ sqrt 2}{sqrt 3 - sqrt 2}...

`frac{sqrt 3+ sqrt 2}{sqrt 3 - sqrt 2}`

Promotional Banner

Similar Questions

Explore conceptually related problems

Rationalize the denominator 1/(sqrt 3 - sqrt 2) - 2/(sqrt 5 - sqrt 3) + 3/(sqrt 5 - sqrt 2)

Find (sqrt3 - sqrt 2)/(sqrt 3+sqrt 2) -(sqrt3 + sqrt 2)/(sqrt 3-sqrt 2) +1/(sqrt2+1)-1/(sqrt2-1)

1/(sqrt3 + sqrt2) + 1/(sqrt3 -sqrt2)=

Examine whether the following numbers are rational or irrational : (2 sqrt3 - 3 sqrt2) (2sqrt3 + 3 sqrt2)

Prove that tan 7 (1^(@))/(2) = sqrt2 - sqrt3 -sqrt4 + sqrt6 = (sqrt3 - sqrt2) (sqrt2 -1).

Rationalize the denominator: (2 + sqrt 3)/(2 - sqrt 3) + (2 - sqrt 3)/(2 + sqrt 3) + (sqrt 3 - 1)/(sqrt 3 + 1)

Prove that cot 7 ""(1^(@))/(2) = sqrt2 + sqrt3 + sqrt4 + sqrt6 = (sqrt3 + sqrt2) (sqrt2 +1 ).

Solve: (sqrt 3+ sqrt2)(sqrt2-sqrt3)

(4(sqrt(6) + sqrt(2)))/(sqrt(6) - sqrt(2)) - (2 + sqrt(3))/(2 - sqrt(3)) =

If x= ( sqrt5- sqrt3)/ ( sqrt5+ sqrt3) and y= ( sqrt5+ sqrt3)/( sqrt5- sqrt3) find the value of x^(2) + y ^(2)