Home
Class 8
MATHS
frac {sqrt 3 +1}{sqrt 6 + sqrt 2}...

`frac {sqrt 3 +1}{sqrt 6 + sqrt 2}`

Promotional Banner

Similar Questions

Explore conceptually related problems

Rationalize the denominator: (2 + sqrt 3)/(2 - sqrt 3) + (2 - sqrt 3)/(2 + sqrt 3) + (sqrt 3 - 1)/(sqrt 3 + 1)

Rationalize the denominator 1/(sqrt 3 - sqrt 2) - 2/(sqrt 5 - sqrt 3) + 3/(sqrt 5 - sqrt 2)

Prove that cot 7 ""(1^(@))/(2) = sqrt2 + sqrt3 + sqrt4 + sqrt6 = (sqrt3 + sqrt2) (sqrt2 +1 ).

Simplify: 1/(sqrt5 + sqrt4) + 1/(sqrt4 + sqrt3) + 1/(sqrt3 + sqrt2) + 1/(sqrt2 + sqrt1)

solve the equations: frac{2}{sqrt x} + frac{3}{sqrt y} =2 and frac{4}{sqrt x} - frac{9}{sqrt y} =-1

Prove that tan 7 (1^(@))/(2) = sqrt2 - sqrt3 -sqrt4 + sqrt6 = (sqrt3 - sqrt2) (sqrt2 -1).

Find (sqrt3 - sqrt 2)/(sqrt 3+sqrt 2) -(sqrt3 + sqrt 2)/(sqrt 3-sqrt 2) +1/(sqrt2+1)-1/(sqrt2-1)

If a = sqrt3, b = (1)/(2) (sqrt6 + sqrt2), and c = sqrt2 , then find angle A

1/(sqrt3 + sqrt2) + 1/(sqrt3 -sqrt2)=

Let k be a real number such that the inequality sqrt(x-3) +sqrt(6 -x) ge k has a solution then the maximum value of k is sqrt3 (2) sqrt6 -sqrt3 (3) sqrt6 (4) sqrt6 +sqrt3