Home
Class 8
MATHS
frac{sqrt 3 + sqrt 2}{sqrt 5 - sqrt 3}...

`frac{sqrt 3 + sqrt 2}{sqrt 5 - sqrt 3}`

Promotional Banner

Similar Questions

Explore conceptually related problems

Rationalize the denominator 1/(sqrt 3 - sqrt 2) - 2/(sqrt 5 - sqrt 3) + 3/(sqrt 5 - sqrt 2)

Simplify: (sqrt 3 - sqrt 5)(sqrt 5+ sqrt 3)

Find (sqrt 3 - sqrt 5)(sqrt 5+ sqrt3)

Simplify {(\sqrt 5+\sqrt 3)\times (\sqrt 5 - \sqrt 3)}/(\sqrt 7- \sqrt 3)\times (\sqrt 7+ \sqrt 3)/(\sqrt 7+\sqrt 3)

Solve: (sqrt 3+ sqrt2)(sqrt2-sqrt3)

Simplify: (\sqrt 5+\sqrt 3)/(\sqrt 5 - \sqrt 3)\times (\sqrt 5+\sqrt 3)/(\sqrt 5 +\sqrt 3)

Find (sqrt3 - sqrt 2)/(sqrt 3+sqrt 2) -(sqrt3 + sqrt 2)/(sqrt 3-sqrt 2) +1/(sqrt2+1)-1/(sqrt2-1)

Prove that tan 7 (1^(@))/(2) = sqrt2 - sqrt3 -sqrt4 + sqrt6 = (sqrt3 - sqrt2) (sqrt2 -1).

Simplify : (\sqrt 5 - \sqrt 3)/(\sqrt 3 + \sqrt 5) \times (\sqrt 5 - \sqrt 3)/(\sqrt 3 -\sqrt 5)

The value of |{:(sqrt(13 )+ sqrt(3), 2sqrt(5),sqrt(5)),(sqrt(15) + sqrt(26),5,sqrt(10)),(3 + sqrt(65), sqrt(15),5):}|