Home
Class 12
MATHS
I=int(cos^(-1)x)/(x^(2))dx...

`I=int(cos^(-1)x)/(x^(2))dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let I=int(cos^(3)x)/(1+sin^(2)x)dx , then I is equal to (where c is the constant of integration )

Evaluate: (i) int(cos sqrt(x))/(sqrt(x))dx (ii) int((sin(tan^(-1)x))/(1+x^(2))dx

I=int(cos(x-a))/(cos x)dx

I=int cos^(2)((x)/(4))dx

(i) int (e^(x) .(1-x))/(x^(2))dx (ii) int ((1+sin x)/(1+cos x))e^(x) dx

" (i) "int cos^(-1)((1-x^(2))/(1+x^(2)))dx

int(1+cos^(2)x)/(1-cos2x)dx=

int(1+cos^(2)x)/(1-cos2x)*dx

I=int(sin^(2)x-cos^(2)x)/(sin^(2)x*cos^(2)x)dx

If I_(1)=int_(0)^(1) 2^(x^(2)) dx, I_(2)=int_(0)^(1) 2^(x^(3)) dx, I_(3)=int_(1)^(2) 2^(x^(2))dx and I_(4)=int_(1)^(2) 2^(x^(2))dx then