Home
Class 12
MATHS
I=int(cos^(-1)x)/((1-x^(2))^(3/2))dx...

`I=int(cos^(-1)x)/((1-x^(2))^(3/2))dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(cos^(3)x)/((1+sin^(2)x)^(2))dx

Evaluate : (i) int(sinx)/((1-4cos^(2)x))dx (ii) int("cosec"^(2)x)/((1-cot^(2)x))dx

(i) int (x cos^-1 x)/sqrt(1-x)^2 dx (ii) int (x tan^-1x)/(1+x^2)^(3//2) dx

int(1+cos^(2)x)/(1-cos2x)dx=

int(1+cos^(2)x)/(1-cos2x)*dx

If i is the greatest of the definite integrals I_(1)=int_(0)^(1)e^(-x)cos^(2)dx,I_(2)=int_(0)^(1)e^(-x^(2))cos^(2)xdx and I_(3)=int_(0)e^(-x^(2))dx,I_(4)=int_(0)^(1)e^(-((x^(2))/(2)))dx then (A)I_(1)(B)I_(2)(C)I_(3)(D)I_(4)

Evaluate the following : (i) int(x+(1)/(x))^(3//2)((x^(2)-1)/(x^(2)))dx " (ii) " int(sqrt(2+logx))/(x)dx (iii) int((sin^(-1)x)^(3))/(sqrt(1-x^(2)))dx " (iv) " int(cotx)/(sqrt(sinx))dx

Let I=int_(0)^(1)(x^(3)cos3x)/(2+x^(2))dx, then

int(1+cos^(2)(x))/(1+cos(2x))dx

I=int(1)/(x^(3)+x^(2)+x+1)dx