Home
Class 8
MATHS
(sqrt 3 - sqrt 7)(sqrt 3- sqrt 7)...

`(sqrt 3 - sqrt 7)(sqrt 3- sqrt 7)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify : (\sqrt 5 - \sqrt 3)/(\sqrt 3 + \sqrt 5) \times (\sqrt 5 - \sqrt 3)/(\sqrt 3 -\sqrt 5)

Simplify {(\sqrt 5+\sqrt 3)\times (\sqrt 5 - \sqrt 3)}/(\sqrt 7- \sqrt 3)\times (\sqrt 7+ \sqrt 3)/(\sqrt 7+\sqrt 3)

Simplify: (\sqrt 5+\sqrt 3)/(\sqrt 5 - \sqrt 3)\times (\sqrt 5+\sqrt 3)/(\sqrt 5 +\sqrt 3)

Prove that tan 7 (1^(@))/(2) = sqrt2 - sqrt3 -sqrt4 + sqrt6 = (sqrt3 - sqrt2) (sqrt2 -1).

(iii) (sqrt 5+ sqrt 3)/(sqrt5-sqrt3)+(sqrt5-sqrt3)/(sqrt5+sqrt3) =?

If sqrt (7 sqrt (7 sqrt7 sqrt7 sqrt7)) = 7 ^(x) then find the value of x

Prove that cot 7 ""(1^(@))/(2) = sqrt2 + sqrt3 + sqrt4 + sqrt6 = (sqrt3 + sqrt2) (sqrt2 +1 ).

Simplify the following expressions. (i) (5+sqrt(7))(2+sqrt(5)) (ii) (5+sqrt(5))(5-sqrt(5)) (iii) (sqrt(3)+sqrt(7))^2 (iv) (sqrt(11)-sqrt(7))(sqrt(11)+sqrt(7))

Prove that tan [7(1)/(2)]^0 = (sqrt(3) - sqrt(2)) (sqrt(2) - 1) .

(3-sqrt7)(3+sqrt7)=?