Home
Class 12
MATHS
Show that : lim( n -> oo ) 1/n^p = 0...

Show that :

`lim_( n -> oo ) 1/n^p = 0` , p > 0

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n to oo) 1/n =0 , lim_( n to oo) 1/n^2

Show that, lim_(n to oo)((1)/(n + 1)+(1)/(n+2)+…+(1)/(6n))=log 6 .

Show that lim_(xrarr0)(1)/(|x|)=oo.

lim_(n rarr oo) (1)/(n)= ________.

Show that lim_(n rarr oo)((1)/(n+1)+(1)/(n+2)+...+(1)/(6n))=log6

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

Let be a sequence such that lim_(x rarr oo)a_(n)=0. Then lim_(n rarr oo)(a_(1)+a_(2)++a_(n))/(sqrt(sum_(k=1)^(n)k)), is

If A= [(1,0),(1,1)] then (A) A^-n=[(1,0),(-n,1)] , n epsilon N (B) lim_(n rarr 00)1/n^2 A^-n = [(0,0),(0,0)] (C) lim_(nrarroo)1/n A^-n = [(0,0),(-1,0)] (D) none of these

Find lim_ (n rarr oo) n ^ (n) (1 + n) ^ (- n)