Similar Questions
Explore conceptually related problems
Recommended Questions
- Show that : lim( n -> oo ) 1/n^p = 0 , p > 0
Text Solution
|
- Evaluate: ("lim")(nvecoo)(n^psin^2(n !))/(n+1)
Text Solution
|
- lim(n)rarr0((p^((1)/(n))+q^((1)/(n)))/(2))^(n),p,q>0 equals
Text Solution
|
- lim(n rarr0){(p^((1)/(n))+q^((1)/(n)))/(2)}^(n),p,q>0
Text Solution
|
- lim (n rarr oo) (1 ^ (p) + 2 ^ (p) + 3 ^ (p) + ......... + n ^ (p)) / ...
Text Solution
|
- lim(n to oo) (n^(p) sin^(2)(n!))/(n +1) , 0 lt p lt 1, is equal to-
Text Solution
|
- lim(n rarr oo)((a^(n+1)+b^(n+1))/(a^(n)-b^(n))), 0 lt a lt b
Text Solution
|
- If A={:[(p,0),(0,p)]:}" then "A^(n+1) is .
Text Solution
|
- Evaluate the following (i) lim(n to oo)((1)/(n^(2))+(2)/(n^(2))+(3)...
Text Solution
|