Home
Class 12
MATHS
Show that : lim( n -> oo ) ( n + 1 )...

Show that :

`lim_( n -> oo ) ( n + 1 )/n = 1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that, lim_(n to oo)((1)/(n + 1)+(1)/(n+2)+…+(1)/(6n))=log 6 .

lim_(n rarr oo) (1)/(n)= ________.

Show that lim_(n rarr oo)((1)/(n+1)+(1)/(n+2)+...+(1)/(6n))=log6

lim_ (n rarr oo) (1) / (1 + x ^ (n))

lim_(n rarr oo)(n+(-1)^(n))/(n)

lim_(n rarr oo)(n!)/((n+1)!-n!)

lim_(n rarr oo) sqrt(n)/sqrt(n+1)=

lim_(n rarr oo)tan^-1n/n

lim_(n rarr oo)((-1)^(n)n)/(n+1)