Home
Class 12
MATHS
int (e^(2x))/(e^x-1)dx=...

`int (e^(2x))/(e^x-1)dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int(e^(2x))/(1+e^x)dx

int e^(2x)dx

Evaluate: int(e^(2x))/(e^(2x)-2)dx

Evaluate: (i) intx\ e^x^2\ dx (ii) int(e^(2x))/(1+e^x)\ dx

Evaluate: int(e^(3x))/(e^(3x)+1)dx

int(e^(2x)-1)/(e^(2x)+1)dx is eual to -

int (e^x)/e^(2x-4) dx

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

(i) int(e^(x))/(1+e^(x))dx" "(ii) int (e^(x)) /((1+e^(x))^(4))dx

(iii) int(e^(x)-1)/(1-e^(-x))dx