Home
Class 12
MATHS
(dy)/(dx)=1/sqrt(1-x^(2))...

`(dy)/(dx)=1/sqrt(1-x^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=tan^(-1)[(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))] then prove that (dy)/(dx)=(1)/(2sqrt(1-x^(2)))

(dy)/(dx)+(y)/(x)=(1)/(sqrt(1+x^(2)))

(dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If y=sin(2sin^(-1)x) , show that: (dy)/(dx)=2sqrt((1-y^(2))/(1-x^(2))) .

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y),show(dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), provethat (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

Solve the following differential equations (dy)/(dx)=-sqrt((1-y^(2))/(1-x^(2)))