Home
Class 12
MATHS
Let [t] denotes the greatest integer ≤ ...

Let [t] denotes the greatest integer ≤ t. The number of points where the function f(x)=[x]ǀx^2-1ǀ+sin (π/[x]+3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=[cosx+ sin x], 0 lt x lt 2pi , where [x] denotes the greatest integer less than or equal to x. The number of points of discontinuity of f(x) is

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

Let f(x) = x [x], where [*] denotes the greatest integer function, when x is not an integer then find the value of f prime (x)

If f(x)=[x] sin ((pi)/([x+1])) , where [.] denotes the greatest integer function, then the set of point of discontiuity of f in its domain is

The function f(x) = {x} sin (pi [x]) , where [.] denotes the greatest integer function and {.} is the fraction part function , is discontinuous at

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

f(x)=[x^(2)]-{x}^(2), where [.] and {.} denote the greatest integer function and the fractional part function , respectively , is

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

int_- 10^0 (|(2[x])/(3x-[x]|)/(2[x])/(3x-[x]))dx is equal to (where [*] denotes greatest integer function.) is equal to (where [*] denotes greatest integer function.)