Home
Class 10
MATHS
if (sqrt5 +sqrt3) =x then (sqrt5-sqrt3)=...

if `(sqrt5 +sqrt3) =x` then `(sqrt5-sqrt3)=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

2sqrt5 - sqrt5 = sqrt5

solve (3sqrt5 +sqrt3)/(sqrt5 -sqrt3)

Find x if (x^(sqrt5+sqrt3))^(sqrt5-sqrt3) =9

Rationalize the denominator 1/(sqrt 3 - sqrt 2) - 2/(sqrt 5 - sqrt 3) + 3/(sqrt 5 - sqrt 2)

If x= ( sqrt5- sqrt3)/ ( sqrt5+ sqrt3) and y= ( sqrt5+ sqrt3)/( sqrt5- sqrt3) find the value of x^(2) + y ^(2)

Simplify: (\sqrt 5+\sqrt 3)/(\sqrt 5 - \sqrt 3)\times (\sqrt 5+\sqrt 3)/(\sqrt 5 +\sqrt 3)

The simplest rationalising factor of 2sqrt(5)-sqrt(3) is (a) 2sqrt(5)+\ 3 (b) 2sqrt(5)+sqrt(3) (c) sqrt(5)+sqrt(3)\ \ (d) sqrt(5)-sqrt(3)

If x=(sqrt(5)+\ sqrt(3))/(sqrt(5)-\ sqrt(3)) and y=(sqrt(5)-\ sqrt(3))/(sqrt(5)+\ sqrt(3)) , then x+y+x y= (a) 9 (b) 5 (c) 17 (d) 7

Simplify {(\sqrt 5+\sqrt 3)\times (\sqrt 5 - \sqrt 3)}/(\sqrt 7- \sqrt 3)\times (\sqrt 7+ \sqrt 3)/(\sqrt 7+\sqrt 3)

Simplify: 1/(sqrt5 + sqrt4) + 1/(sqrt4 + sqrt3) + 1/(sqrt3 + sqrt2) + 1/(sqrt2 + sqrt1)