Home
Class 11
MATHS
Find lim(n->oo) (1-m/n)^n...

Find `lim_(n->oo) (1-m/n)^n`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n->oo) nsin(1/n)

If A=[{:(,1,a),(,0,1):}] then find lim_(n-oo) (1)/(n)A^(n)

The value of lim_(n->oo) n^(1/n)

Prove that lim_(n->oo)(1+1/n)^n=e

f'(0) = lim_(n->oo) nf(1/n) and f(0)=0 Using this, find lim_(n->oo)((n+1)(2/pi)cos^(- 1)(1/n)-n)),|cos^(-1)1/n|

If S_n=sum_(k=1)^n a_k and lim_(n->oo)a_n=a , then lim_(n->oo)(S_(n+1)-S_n)/sqrt(sum_(k=1)^n k) is equal to

lim_(n rarr oo)2^(1/n)

If f(n+1)=1/2{f(n)+9/(f(n))},n in N , and f(n)>0 for all n in N , then find lim_(n->oo)f(n)

lim_(x->oo)(1-x+x.e^(1/n))^n

Evaluate the following limit: (lim)_(n->oo)(1/(n^2)+2/(n^2)+3/(n^2)++(n-1)/(n^2\ ))