Home
Class 12
MATHS
Show that , Is LHS = RHS ? lim( x ->...

Show that , Is LHS = RHS ?

`lim_( x -> 0 ) ( e^x + e^(-x ) -2 )/x^2` = 2

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_ (x rarr0) (e ^ (x) + e ^ (- x) -2) / (x ^ (2))

Find lim_(x rarr0)(e^(x)-e^(-x)-2)/(x^(2))

Evaluate : lim_(x -> 0 ) ((e^(x^(2)) - cosx )) / x^2

lim_(x rarr 0) (e^x+e^-x-2 cosx)/(x sinx)

lim_(x rarr0)(e^(x)+e^(-x)-2cos x)/(x sin x)=

lim_(x rarr0)(e^(x)+e^(-x)-2cos x)/(x sin x)

lim_(x rarr0)(e^(x)+e^(-x)-2cos x)/(x sin x)

lim_ (x rarr0) (e ^ (x) + e ^ (- x) -2) / (x tan x)

Evaluate lim_(xto0) (e^(x)+e^(-x)-2)/(x^(2))

lim_ (x rarr0) (e ^ (x) -e ^ (- x)) / (x)