Home
Class 11
MATHS
If y=f(u), u=g(x), then dy/dx=?...

If ` y=f(u), u=g(x), then dy/dx=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f'(x)=sin(log x)and y=f((2x+3)/(3-2x)), then dy/dx equals

If x=f(t) and y=g(t) , then find (dy)/(dx)

If y={f(x)}^(phi(x)),"then"(dy)/(dx) is

Let the derivative of f(x) be defined as D^(**)f(x)=lim_(hrarr0)(f^(2)x+h-f^(2)(x))/(h), where f^(2)(x)={f(x)}^(2) . If u=f(x),v=g(x) , then the value of D^(**)(u.v) is

Let the derivative of f(x) be defined as D^(**)f(x)=lim_(hto0)(f^(2)x+h-f^(2)(x))/(h), where f^(2)(x)={f(x)}^(2) . If u=f(x),v=g(x) , then the value of D^(**)((u)/(v)) is.

Let f'(x) = sin(x^2) and y = f(x^2 +1) then dy/dx at x=1 is

if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is:

if f'(x)=sqrt(2x^2-1) and y=f(x^2) then (dy)/(dx) at x=1 is:

If y=e^(sin^(-1)x)" and "u=logx," then"(dy)/(du), is

If variables x and y are related by the equation x=int_(0)^(y)(1)/(sqrt(1+9u^(2))) du, then (dy)/(dx) is equal to